راکتور پلیمریزاسیون

نام ماده (فارسی):راکتور پلیمریزاسیون نام ماده (انگلیسی):Polymerization reactor سایر اسامی: DESCRIPTION:واکنشهای پلیمریزاسیون با توجه به تنوع تولیدشان از استفاده کننده های عمده راکتورها به شمار می روند. البته ساختار کلی راکتورها تفاوت چندانی با راکتورهای سایر مواد ندارد: اما با توجه به اهمیت این واکنشها، مطالبی در این مورد بیان می شود. انواع راکتورهای پلیمریزاسیون راکتورهای متنوعی برای انجام واکنشهای پلیمریزاسیون بکار میروند. این راکتورها و کاریرد آن در جدول زیر آورده شده است. تعاریف و بیان تفاوتها در راکتورهای ناپیوسته (Batch Reactors) تمامی اجزاء مخلوط واکنش به راکتور وارد می شوند و تا پایان واکنش در راکتور باقی می مانند. معمولاً در ابتدای پلیمریزاسیون در راکتورهای ناپیوسته یک گرم کن وجود دارد که طی آن دمای مخلوط به دمای لازم برای شروع واکنش افزایش داده می شود. سپس واکنش پلیمریزاسیون شروع شده و به علت گرمازایی قابل توجه آن دمای مخلوط واکنش می تواند افزایش یابد به همین دلیل در راکتورهای ناپیوسته باید قابلیت گرم و سرد کردن سریع و کافی و همچنین سیستم کنترل درجه حرارت موثر پیش بینی گردد. فرایندهای ناپیوسته برای پلیمریزاسیون با درجه تبدیل بالا مناسب است. از طرف دیگر این سیستمها برای بروز انفجار حرارتی مستعد هستند. فرایندهای ناپیوسته عمدتاً در زمینه پلیمریزاسیون رادیکالی به کار می روند. راکتور نیمه ناپیوسته(Semi Continuous Reactors) یا(Semi Batch): در راکتورهای نیمه پیوسته مواد برخی از مواد واکنش کننده ممکن است به تدریج به راکتور اضافه شوند . یا آنکه محصولات جانبی تولید شده در طی واکنش از راکتور خارج گردند. در بسیاری از پلیمریزاسیونهای رادیکالی معمول است که منومر، حلال و یا شروع کننده را به منظور حفظ درجه حرارت و افزایش سرعت تولید به تدریج به راکتور اضافه می کنند . اضافه کردن تدریجی کومنومر در کوپلیمریزاسیون نیز وقتی که اختلاف فعالیت منومرها زیاد است از جمله کاربردهای این فرایند است. در پلیمریزاسیونهای نیمه پیوسته ممکن است که تمامی مواد واکنش کننده در ابتدای واکنش به راکتور اضافه گردند ولی قبل از تشکیل محصولات جانبی ، باید از راکتور خارج شو ند. پلیمریزاسیونهای مرحله ای از این نوع سیستمها هستند. تبخیر محصولات جانبی یک عامل موثر در جذب حرارت واکنش است که در برخی از موارد می تواند به قدری شدید باشند که باعث افت دمای واکنش گردد . در این حالت برای جبران حرارت از دست رفته حتی ممکن است نیاز به حرارت دهی نیز باشد . راکتورهایی که برای فرایند نیمه پیوسته مورد استفاده قرار می گیرند مشابه با راکتورهای ناپیوسته است با این تفاوت که امکان افزایش مداوم مواد اولیه به آن و یا خروج محصولات جانبی از آن پیش بینی شده است. در راکتورهای پیوسته(Continuous Reactors) مواد واکنش دهنده با شدت جریان ثابت به درون راکتور رانده شده و محصولات نیز به طور مداوم از راکتور خارج می گردند. پس از راه اندازی یک راکتور پیوسته، راکتور پس از عبور از یک حالت انتقالی به یک شرایط پایدار می رسد. در این شرایط شدت حرارت زائی سیستم نیز به مقدار ثابتی می رسد. فرایندهای مداوم عملیات آسان تر و هزینه کمتری دارد و هنگامی که ظرفیت تولید بالا باشد مورد استفاده قرار می گیرند. در موارد خاص پلیمریزاسیون در راکتورهای ناپیوسته که دارای انعطاف پذیری بیشتری برای تولید پلیمرهایی با درجا ت تبدیل مختلف هستند، انجام می گیرد. فرایندهای پیوسته در راکتورهای همزن دار (Continuous Stirred Tank Reactors ,CSTR) و راکتورهای لوله ای (Tubular Reactor) قابل انجام است. راکتورهای همزن دار پیوسته مشابه با راکتورهای ناپیوسته هستند با این تفاوت که امکان ورود مداوم مواد اولیه به آنها و خروج محصول نهایی از آنها پیش بینی شده است.در شکل نمونه ای از راکتور همزن دار را مشاهده می کنید. شکل ۱۸ – شمایی از راکتور لوله ای از راکتورهای همزن دار پیوسته به صورت سری (Cascade) در صنعت برای پلیمریزاسیون امولسیونی مثل وینیل کلراید و وینیل استات استفاده می گردد. در راکتورهای لوله ای به منظور جذب حرارت آزاد شده، قطر راکتور همواره کوچک اختیار می شود.در شکل زیر نمونه ای از این نوع را می بینید. انجام فرایندهای مختلف پلیمریزاسیون در راکتورهای پلیمریزاسیون شکل ۱۹ راکتور CSTR تکنولوژی پلیمریزاسیون جرمی برای پلیمریزاسیونهای با رشد مرحله ای، مرسوم است، زیرا به واسطه کمی انرژی آزاد شده، جذب حرارت به سهولت انجام می پذیرد. به علت پایین بودن ویسکوزیته تا درجات تبدیل بالا، اختلاط نیز به نحو موثری قابل انجام است . حرارت آزاد شده قابل توجه و افزایش سریع ویسکوزیته در پلیمریزاسیون با رشد زنجیری، کارایی تکنولوژی جرمی را برای این نوع مکانیسم پلیمریزاسیون کاهش می دهد .زیرا بر خلاف حالت قبل، افزایش سریع ویسکوزیته و در نتیجه عدم امکان کنترل درجه حرارت، دستیابی به درجات تبدیل بالا را مقدور نمی سازد. محلول پلیمریزاسیون جرمی از درجه خلوص بالایی برخوردار بوده و عملیات تخلیص کمتری را می طلبد. انجام پلیمریزاسیون در حضور یک حلال از مشکلات انتقال حرارت و اختلاط می کاهد. پلیمر و منومر در داخل حلال محلول هستند . علاوه بر این ویسکوزیته کمتر سبب بهبود اختلاط و کارایی شروع کننده می گردد. مهمترین نقطه ضعف این روش هزینه جداسازی حلال و بازیابی آن است . ویسکوزیته سیستم پلیمریزاسیون تعلیقی در طول واکنش نسبتاً ثابت باقی مانده و عمدتاً به وسیله ویسکوزیته فاز مداوم(آب) تعیین می گردد. اغلب پلیمرها دارای دانسیته بیشتری نسبت به منومرهای خود هستند. به این جهت در پلیمریزاسیون تعلیقی سیستم اختلاط باید به گونه ای انتخاب گردد که در ابتدا منومرهای از سطح به زیر کشیده شده و در داخل فاز آبی پراکنده شوند و در انتها از ته نشینی ذرات جامد پلیمری جلوگیری به عمل آورده و آنها را به طور یکنواخت در داخل فاز پیوسته پراکنده سازد. فاز پیوسته به عنوان عامل انتقال حرارت عمل نموده و در نتیجه کنترل درجه حرارت در این فرایند ساده تر از نوع جرمی است. چسبندگی و رسوب پلیمر نیز به مراتب کمتر از فرایند جرمی مشاهده می شود. پلیمریزاسیون تعلیقی به عنوان مرحله دوم فرایند جرمی نیز قابلیت کاربرد دارد(مانند فرایند تولید پلی استیرن مقاوم). زیرا معمولاً ادامه پلیمریزاسیون تا رسیدن به درجه تبدیل نهایی توسط فرایند تعلیقی انجام می گیرد. پس از پایان پلیمریزاسیون، دانه های پلیمری از طریق سانتریفوژ جدا و خشک می گردند. اختلاط در پلیمریزاسیون امولسیونی نسبت به پلیمر یزاسیون تعلیقی از اهمیت کمتری برخوردار است و عمدتاً جهت تسهیل انتقال حرارت طراحی می شود . کاربرد زیاذ امولسیفایر در پلیمریزاسیون امولسیونی، جداسازی آن را در پایان واکنش دشوار می سازد . به همین سبب معمولاً از فرایندهای امولسیونی در جایی استفاده می شود که در شکل نهایی مصرف به صورت لاتکس یا امولسیون باشد(مانند امولسیون نهایی اکریلیک). در صورت لزوم استفاده از پلیمر خالص، محلول پلیمریزاسیون ابتدا منعقد و سپس دانه های پلیمر به کمک فیلتر جدا و خشک می گردد. مقایسه انواع تکنولوژی های پلیمریزاسیون و معایب (Fail) بررسی مشکلات فرایند پلیمریزاسیون مشکلات تولید صنعتی پلیمرها با تولید ترکیبات آلی با وزن ملکولی کم بسیار متفاوت است. در اینجا برخی از مهمترین ویژگی های واکنش های پلیمریزاسیون مورد بحث قرار می گیرند. افزایش ویسکوزیته یکی از مهمترین مشکلات واکنش های پلیمریزاسیون، افزایش شدید ویسکوزیته با پیشرفت واکنش است .در حقیقت بخش عمده مشکلات در مهندسی فرایند های پلیمریزاسیون بازتابی از افزایش ویسکوزیته است و علم نوبنیاد مهندسی واکنش های پلیمریزاسیون نیز چیزی جز چگونگی خنثی نمودن اثر افزایش ویسکوزیته در چارچوب مهندسی شیمی نیست. در پلیمریزاسیون زنجیری به محض شروع واکنش، پلیمرهای با وزن ملکولی بالا تولید می شود . تغییرات وزن ملکولی با درجه تبدیل نسبتاً کم است. از این رو افزایش ویسکوزیته به واسطه افزایش میزان پلیمر در مخلوط واکنش صورت می گیرد. در پلیمریزاسیون مرحله ای تنها الیگومرها تا درجات تبدیل بالا وجود دارند و تنها بعد از آن وزن مولکولی پلیمر به طور ناگهانی و به شدت افزایش می یابد . ویسکوزیته محلول در حال واکنش نیز تا مراحل پایانی واکنش نسبتاً کم است و سپس به طور ناگهانی افزایش می یابد. بنابراین عامل افزایش ویسکوزیته تا مراحل پایانی واکنش، میزان پلیمر در مخلوط واکنش است. در حالیکه در مراحل پایانی افزایش درجه پلیمریزاسیون یا به عبارت دیگر وزن ملکولی پلیمر سبب اف زایش ویسکوزیته می شود که اثرات آن به مراتب شدیدتر است. افزایش ویسکوزیته در سیستم های همگن به مراتب شدیدتر از ناهمگن است . افزایش ویسکوزیته در پلیمریزاسیونهای جرمی و محلول تا۱۰۶برابر نیز تخمین زده می شود. در حالیکه در پلیمریزاسیون امولسیونی که به واسطه امولسیفایرهایی با وزن ملکولی کم تثبیت م یشود، ویسکوزیته به طور متوسط تا ۱۰۳ برابر افزایش نشان می دهد. افزایش ویسکوزیته در پلیمریزاسیون تعلیقی مشهود نیست و ویسکوزیته آن به وسیله فاز آب دیکته می شود. از مهمترین اثرات افزایش ویسکوزیته کاهش ضریب نفوذ ملکولی و ضریب انتقال جرم است . کاهش ضریب نفوذ ملکولی باعث کاهش تحرک ماکرورادیکال های در حال واکنش شده و در نتیجه از وقوع واکنش پایان جلوگیری به عمل می آورد که این امر پدیده اثر ژل را به دنبال دارد . بروز اثر ژل باعث افزایش ناگهانی و شدید سرعت واکنش می گردد. به موازات افزایش سرعت واکنش،از یک طرف شدت آزادسازی حرارت آهنگ صعودی پیدا می کند و از طرف دیگر توان مکانیکی همزن افزایش می یابد .در نتیجه کاهش توان سرمایشی راکتور کاهش می یابد .این موضوع منجر به بروز مشکلاتی در کنترل و پایداری راکتور پلیمریزاسیون می گردد. در ناحیه ای که تولید ژل زیاد می شود، انرژی آزاد شده به اندازه ای است که حالت انفجاری به سیستم می دهد. در بسیاری از واحدهای صنعتی وقایع مصیبت باری به واسطه خارج شدن کنترل واکنش پلیمریزاسیون به دلیل عدم موفقیت در جذب حرارت آزاد شده گزارش شده است . به همین دلیل طراحی دقیق راکتور و سیستم کنترل آن در فرایندهای پلیمریزاسیون از اهمیت خاص برخوردار است. حرارت زایی بسیاری از واکنش های پلیمریزاسیون با پیشرفت واکنش مقدار قابل توجهی انرژی از خود آزاد می کنند . علاوه بر این، انرژی مکانیکی لازم برای اختلاط نیز در ویسکوزیته بالا تبدیل به انرژی گرمایی می شود . جذب انرژی آزاد شده در پلیمریزاسیونهای با درجه خلوص بالا به واسطه افزایش ویسکوزیته ، چسبندگی پلیمر به سطوح انتقال حرارت و تغییرات فاز در طی واکنش، از مهمترین دشواری های مهندسی واکنش های پلیمریزاسیون است. طراحی راکتور واکنشهای پلیمریزاسیون به میزان قابل توجهی انرژی آزاد می کنند. در واکنشهای مواد با وزن مولکولی کم بالاترین شدت حرارت در ابتدای واکنش که در آن غلظت مواد واکنش کننده حداکثر است رخ می دهد . در حالیکه در واکنشهای پلیمریزاسیون به ویژه نوع جرمی آن به علت وقو ع اثر ژل و افرایش ناگهانی سرعت واکنش نقطه اوج آزادسازی حرارت در اواسط واکنش رخ می دهد . متوسط مقدار حرارت آزاد شده و همچنین حداکثر مقدار آن همسو با درجه حرارت و مقدار شروع کننده تغییر میکند . مقادیرحرارت و به ویژه حرارت ماکزیمم در پلیمریزاسیون متیل متاکریلات به مراتب بیشتر از پلیمریزاسیون استیرن است . این اختلاف ریشه در وجوذ اثرژل قوی در پلیمریزاسیون متیل متاکریلات نسبت به استیرن دارد. در مورد متیل متاکریلات اثر ژل در اوایل واکنش رخ میدهد. از این رو حرارت آزاد شده دارای یک نقطه اوج کاملاً متمایز است. در حالیکه اثر ژل در مورداستیرن در اواسط واکنش به وقوع میپیوندد یعنی در جایی که سرعت واکنش پلیمریزاسیون به واسطه مصرف مونومر و شروع کننده بسیار کم شده است. بنابراین ممکن است که حتی اثر ژل نیز قادر به افزایش سرعت واکنش تا مرز مقادیر اولیه آن نباشد.
0 پاسخ

ارسال یک پاسخ

در گفتگو ها شرکت کنید.

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *


سه + شش =